
Stephen Checkoway

Programming Abstractions
Lecture 25: MiniScheme G

Announcement

Homework 7 is now up on the website

‣ Use the same groups as before (this time, they should be created already)

‣ It's due on Dec. 17

Exam 2 is next week

‣ Monday, Dec. 13: Exam 2 review; come prepared with questions!

‣ Wednesday, Dec. 15: Exam 2, take home exam

Office hours

‣ Tomorrow at 13:30–14:30

Example: ((lambda (x y) (+ x y)) 3 5)
Parsing

Parse into an (app-exp proc args)

(app-exp (lambda-exp '(x y)  
 (app-exp (var-exp '+)  
 (list (var-exp 'x)  
 (var-exp 'y))))  
 (list (lit-exp 3)  
 (lit-exp 5)))

Example: ((lambda (x y) (+ x y)) 3 5)
Evaluating

(app-exp (lambda-exp '(x y)  
 (app-exp (var-exp '+)  
 (list (var-exp 'x)  
 (var-exp 'y))))  
 (list (lit-exp 3) (lit-exp 5)))

This is evaluated by calling apply-proc with the evaluated procedure and evaluated
arguments

The procedure evaluates to  
(closure '(x y)  
 (app-exp (var-exp '+)  
 (list (var-exp 'x) (var-exp 'y)))  
 e)  
The arguments evaluate to '(3 5)

Example: ((lambda (x y) (+ x y)) 3 5)
Evaluating

apply-proc will evaluate the closure 
(closure '(x y)  
 (app-exp (var-exp '+)  
 (list (var-exp 'x) (var-exp 'y)))  
 e)  

by calling eval-exp on the body in the environment e[x ! 3, y ! 5]

Since the body is an app-exp, it'll evaluate (var-exp '+) to get  
(prim-proc '+) and the arguments to get '(3 5)

Example 2
Parsing

Example 2
Parsing

What is the result of parsing this?  
(let ([f (lambda (x) (* 2 x))])  
 (f 6))

Example 2
Parsing

What is the result of parsing this?  
(let ([f (lambda (x) (* 2 x))])  
 (f 6))

(let-exp '(f)  
 (list (lambda-exp  
 '(x)  
 (app-exp (var-exp '*)  
 (list (lit-exp 2) (var-exp 'x)))))  
 (app-exp (var-exp 'f)  
 (list (lit-exp 6))))

Example 2
Evaluating

(let-exp '(f)  
 (list (lambda-exp  
 '(x)  
 (app-exp (var-exp '*)  
 (list (lit-exp 2) (var-exp 'x)))))  
 (app-exp (var-exp 'f)  
 (list (lit-exp 6))))

Evaluate the let-exp by extending the current environment e with f bound to the
closure we get by evaluating the lambda-exp in environment e: 
(closure '(x)  
 (app-exp (var-exp '*)  
 (list (lit-exp 2) (var-exp 'x)))  
 e)

Example 2
Evaluating

With f bound to  
(closure '(x)  
 (app-exp (var-exp '*)  
 (list (lit-exp 2) (var-exp 'x))) 
 e)  
we next evaluate the body of the let  
(app-exp (var-exp 'f) (list (lit-exp 6)))

This will evaluate (var-exp 'f), getting the closure above and evaluate the

arguments getting '(6)

apply-proc will call eval-exp on the body of the closure and the extended

environment e[x ! 6]

set! and begin expressions

MiniScheme G: set! and begin

EXP → number	 	 	 	 parse into lit-exp  
 | symbol	 	 	 	 parse into var-exp  
 | (if EXP EXP EXP) 	 	 parse into ite-exp  
 | (let (LET-BINDINGS) EXP)	 parse into let-exp  
 | (lambda (PARAMS) EXP)	 parse into lambda-exp  
 | (set! symbol EXP)	 	 parse into set-exp  
 | (begin EXP*)	 	 	 parse into begin-exp  

 | (EXP EXP*) parse into app-exp  
LET-BINDINGS → LET-BINDING* 
LET-BINDING → [symbol EXP]* 
PARAMS → symbol*

What is the value of

(let ([x 10])

 (+ x

 (let ([x 20])

 x)

 x))

This is the sum of 3 numbers

A. 30

B. 40

C. 50

D. 60

11

What is the value of

(let ([x 10])

 (+ x

 (begin

 (set! x 20)

 x)

 x))

This is the sum of 3 numbers

A. 30

B. 40

C. 50

D. 60

12

Assignments

Assignment expressions are different in nature than the functional parts of
MiniScheme

The set! expression introduces mutable state into our language

We're going to use a Scheme box to model this state

Boxes in Scheme

box is a data type that holds a mutable value

‣ Constructor: (box val)

‣ Recognizer: (box? obj)

‣ Getter: (unbox b)

‣ Setter: (set-box! b val)

Example usage

We can create a box holding the value 275 with  
(define b (box 275))

We can get the value in the box with (unbox b)

We can change the value in the box with (set-box! b 572)

If we use (unbox b) afterward, it'll return 572

This models the way variables work in non-functional languages

What does this code print out (ignoring line breaks) and why?

(define (f b)

 (displayln (unbox b))

 (set-box! b (* 2 (unbox b))))

(let ([x (box 5)])

 (f x)

 (f x)

 (displayln (unbox x)))

A. 5 5 5 because each call to f
creates a new box (pass by
value)

B. 10 10 5 because f doubles the
value in the box b but box x
contains 5

C. 5 10 5 because box b is
initialized with value 5 but is
doubled by the first call to f

D. 5 10 20 because b and x point
to the same box whose value is
doubled twice

16

Implementing set!

To implement set! in MiniScheme

‣ Change the environment so that everything in the environment is in a box

‣ When we evaluate a var-exp, we'll lookup the variable in the environment,
unbox the result, and return it

‣ When we evaluate a set expression such as (set! x 23), we'll lookup x in
the environment to get its box and then set the value using set-box!

We can do this in four simple steps

Implementing set!
Step 1

We need to box every value in the environment

Find every place you extend the environment and replace each call  
(env syms vals old-env)  

with  
(env syms (map box vals) old-env)

Implementing set!
Step 2

Do not change your env-lookup procedure

Do change the line in eval-exp that evaluates var-exp expressions to 
[(var-exp? tree) (unbox (env-lookup e (var-exp-sym tree)))]

At this point, the interpreter should work exactly as it did before you introduced
boxes!

Implementing set!
Step 3

Set expressions have the form (set! sym exp)

You need a new data type for these, I used set-exp

When parsing, put the unparsed symbol (i.e., 'x rather than (var-exp 'x))
into the set-exp and the parsed expression exp

Implementing set!
Step 4

Inside eval-exp, you'll need some code  
[(set-exp? tree)  
 (set-box! (env-lookup …)  
 (eval-exp …))]

Let's make set! useful!

MiniScheme now has set! but it isn't of much use until we can execute a
sequence of expressions like 
(let ([x 0])  
 (begin  
 (set! x 23)  
 (+ x 5)))

In Racket, we don't need the begin, but we do in MiniScheme because our let
expressions only have a single expression as a body

Parsing a begin expression
(begin exp1 exp2 ... expn)

You need a new data type to hold these

‣ Since begin creates a sequence of expressions, begin-exp is a good name

The expressions in (begin exp1 exp2 … expn) are evaluated in order
and the value of the expression is the value that results from evaluating
expn. How should we implement evaluating all the expressions? Assume we
have something like (let ([exps (begin-exp-exps tree)]) …).

A. (map eval-exp exps)

B. (map (λ (exp) (eval-exp exp e)) exps)

C. (foldr (λ (exp acc) (eval-exp exp e)) (void) exps)

D. (foldl (λ (exp acc) (eval-exp exp e)) (void) exps)

E. More than one of the above

24

Evaluating a begin expression
(begin exp1 exp2 ... expn)

Evaluate each expression in turn, returning the final one

‣ You can create a helper function to do that, or you can use our old friend:
foldl

‣ My code looks something like 
(foldl (λ (exp acc) (eval-exp exp e)) (void) …)

‣ (void) returns, well, a void value which does nothing

